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ABSTRACT

Whether quantitative or qualitative, research generates data that requires 
analysis and interpretation to derive insights. Statistical tests allow researchers 
to calculate how much the relationship between the variables they have 
investigated differs from that which might be expected by chance alone. In 
statistical terms, whether the null hypothesis of no significant relationship is 
accepted or rejected. This article will consider the common types of statistical 
tests applied to quantitative research data and their interpretation. By the end 
of this paper, readers should be better informed about the choice of statistical 
test for their research study and how to interpret the results.
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Introduction

Statistical significance

The null hypothesis for statistical tests simply states that no significant association 
exists between the variables under consideration. We then employ statistical 
methods to support the null hypothesis, i.e., the findings are no more likely to 
occur than pure chance, or to reject it, i.e., the findings are unlikely to be due to 
chance.

A p-value measures the probability of obtaining the observed results, assuming 
that the collected data meet the null hypothesis expectation, i.e., there is no effect 
or relation between the variables. The level of statistical significance is expressed 
as a p-value between 0 and 1. The significance level is conventionally set at 0.05, 
meaning there is a 5% chance of the result occurring if the variables are not 
associated. Thus, a p-value <0.05 obtained after analysing the research data is 
statistically significant and unlikely to be a purely random (chance) occurrence. 
The closer the p-value to zero, the less likely it is to have occurred by chance. For 
a p of 0.001, there is a one in one thousand chance; for a p of 0.045, the chance 
is one in twenty-two. Values that round to 0.000 should be reported as <0.001, 
as they can never be zero.

A statistically significant result says nothing more than that there is an association 
between the variables. It does not imply a causal relationship.

It is important to recognise that a statistically significant result may, nevertheless, 
not be clinically significant. A large study can detect small, clinically unimportant 
findings that are statistically significant. P values are subject to several influences. 
Lower p-values are found in larger sample sizes when there is a greater spread 
of observations with large standard deviations and when the measured effect 
observed in interventions is very significant. 
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Choosing the correct statistical test (numerical 
data)

Selecting the right statistical test is often left until after the 
data has been collected and the study is completed. In fact, 
the appropriate statistical test should be considered when 
planning a research study so that the study is adequately 
powered to accept or reject a hypothesis. This has 
important implications, for example, for the study sample 
size.  In more complex studies, it’s best to get advice from 
a statistician before starting the study. Indeed, to register a 
clinical trial, a statistical analysis plan is required.

A few basic considerations will help in selecting the correct 
statistical test, and these will be outlined below.

Q1. What types of data are being measured?

Raw data consists of variables or data items; the variable 
type is important when selecting the appropriate statistical 
test. Numerical quantitative variables (quantities) may be 
continuous, e.g., weight, height, or discrete, i.e., limited 
numbers in a defined collection, e.g., number of siblings. 
Categorical variables are values that are grouped together 
based on a particular characteristic or attribute, e.g., age 
group, sex, or educational level. Categorical variables that 

can be ordered or ranked are referred to as ordinal variables, 
such as the Likert scale of satisfaction rating (extreme dislike, 
dislike, neutral, like, extreme like). Categorical variables 
such as region, the categories of which have no obvious 
order or rank, are called nominal variables. Binary variables 
are categorical variables with exactly two categories, often 
yes and no, usually represented by 1 and 0.

Q2. Are the data paired or unpaired?

Consider a researcher undertaking a prospective study 
of a cohort of patients, making observations on them at 
two-time points (at the beginning and end of the study). 
For each individual, there will be two observations (paired 
data). Another study surveys a group with pre- and post-
treatment samples, again producing paired data. In a 
further study, a researcher may compare observations at 
one point in time in one group of patients with a matched 
control group. Here, there will be matched data, which can 
also be considered paired. 

It is important to determine if the data are paired or 
independent, as applying the wrong statistical test will 
give very different results. Independent, unpaired data 
collected from different populations can give valuable 
insights into baseline differences between them, which 

Figure 1. Normal and non-normal distributions
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can then be generalised. However, paired data in the 
same population are much more likely to give insight into 
the effects of a specific treatment or intervention. There 
are likely to be many other (unmeasured) factors when 
comparing two unrelated and unmatched populations.

Consider a study that compares results from two different 
populations that are not related in any significant way. 
The researcher wants to compare the differences between 
the two groups. The data will be independent (unpaired). 
Alternatively, another study comparing results from men 
versus women (unpaired). Unpaired samples also include 
a study in the same population when comparing results 
taken at different times. 

Q3. Are the values of the outcome measure of the 
study in a normal (parametric) distribution or non-
parametric? 

The term normal distribution was introduced in the 
19th century when it was believed that many natural 
phenomena, such as height, were distributed in a 
symmetrical ‘bell-shaped’ curve around the mean value. 
It can also be termed a Gaussian distribution (Figure 
1). Statistical tests that assume the data are normally 
distributed are termed parametric tests, in contrast to non-
parametric tests, where this is not assumed.

Parametric tests are applied when it can be assumed that 
the data of interest are at least approximately normally 
distributed. Depending on whether the data are paired or 
independent, the means of two groups can be compared 
using paired t-test or unpaired t-test. If there are more 
than two groups, the means can be compared by Analysis 
of Variance (ANOVA). A more sophisticated test, 
MANOVA (Multivariate Analysis of Variance), analyses 
multiple dependent variables.

Non-parametric statistical tests do not make any 
assumptions about the data distribution and are used, 
for example, where the data are likely to be skewed. The 
Mann-Whitney U test (also called the Wilcoxon rank sum 
test) is suitable for comparing two unpaired datasets and 
can also be used for paired data. If there are more than two 
sets, the Kruskal-Wallis test is employed.  

A simple decision algorithm numerical outcome measures 
is shown in Table 1.

Chi-squared test to compare two categorical 
variables

The Chi-squared test is a commonly used test to determine 

whether observed data are significantly different from what 
would be expected if there were no association between 
the variables. It tests categorical data, which are usually 
displayed in a frequency distribution table (contingency 
table; Table 2). Note that the table contains actual numbers 
of occurrences and not percentages, means, proportions, 
or other calculated numbers. 

Consider researchers interested in the length of breast-
feeding (less than 3 months versus 3 months or more) 
comparing doctors’ wives with farmers’ wives; the null 
hypothesis being that there is no difference.

The chi-squared statistic measures the extent to which 
the observed values in the table differ from the expected 
values (the values if there were no association between 
the variables). The chi-squared probability tells us the 
probability of the observed values occurring under the 
null hypothesis of no association. Since 0.065 is greater 
than 0.050, we cannot reject the null hypothesis. The 
probability depends not only on the value of the chi-
squared statistic but on the number of rows and columns 
in the table. This test should only be used if all of the 
expected table cell values are greater than one and 80% of 
the expected values are greater than five. Rows or columns 
can usually be combined to meet this requirement, or 
Fisher’s exact test can be used instead. For neither test 
should “no answer” categories be included.

Table 1. Decision algorithm for numerical data 

Table 2. Relationship between duration of breastfeeding 
and partner occupation (invented data)
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Regression analysis

In regression analysis, we are trying to quantify the 
relationship between a dependent variable (the variable 
you want to analyse) and at least one independent variable, 
the explanatory variable. This can be used to predict the 
extent to which changes in one variable will affect changes 
in the outcome variable of interest. We will look at an 
example where a researcher investigates the influence of 
prednisolone dose (the independent variable) on plasma 
glucose levels (the dependent variable of interest).

Simple Linear regression analysis

In linear regression analysis, we assume that the relationship 
between variables can be described by a straight line called 
the regression line. A simple linear regression analysis 
only looks at two variables (i.e., one independent and one 
dependent variable) and is sometimes called bivariate. 

Linear regression is typically used with continuous 
variables, such as height, weight, and blood glucose level, 
but discrete and even some ordinal variables can be used, 
and variables can be transformed, for example, by taking 
logarithms. Traditionally, linear regression was thought 
of graphically, with the dependent variable plotted on 

the vertical (y) axis and the independent variable on 
the horizontal (x) axis. A positive slope shows that as x 
increases, y increases, whilst in a negative slope, y decreases 
as x increases (Figure 2). Computer software is used to fit a 
straight line to the data set.

Regression statistics

The strength and the direction of the relationship between 
the dependent and independent variables are given by the 
correlation coefficient (r), sometimes referred to as Pearson’s 
correlation coefficient, provided both the dependent 
and independent variables are normally distributed. 
If either of the variables is not normally distributed, 
then Spearman’s rho is the non-parametric equivalent 
of Pearson’s r. A perfect direct relationship between the 
variables is denoted by an r value of +1. An r value of 0 
denotes no relationship, while r = -1 indicates a perfect 
negative relationship (Figure 2). The correlation coefficient 
values near 1 indicate the strength of the relationship, 
while the ‘+’ or ‘–‘ sign indicates the direction of the 
relationship. An increase in a dependent variable with an 
increase in the independent variable indicates a positive 
correlation, denoted by the ‘+’ sign, while a decrease in a 
dependent variable with an increase in the independent 
variable is denoted by a ‘–‘ sign. The p-value determines 

Figure 2. Illustration of different correlation coefficients. X axis independent variable, Y axis dependent variable
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the statistical significance of the correlation coefficient. 
Significant positive or negative correlation further needs 
to be assessed statistically by linear regression analysis after 
assuming certain prerequisites. 

Another important statistic is the regression coefficient (β) 
which describes the change in the dependent variable (y) 
for each one-unit change in the independent variable (x). 
This corresponds to the gradient of the line using the 
equation for a straight line:  y = βx + c where c is the value 
of y when x is 0 i.e. the intercept (sometimes shown as 
β0).

Let us consider a hypothetical research project investigating 
the influence of prednisolone dose on plasma glucose 
(Figure 3). The linear regression analysis has shown a best-
fit line with the equation y = 1.01 + 0.60x. The β value 
(slope, regression coefficient) of 0.60 indicates that for 
every one-unit increase in the independent variable (dose 
of prednisolone), the plasma glucose will rise by 0.60 
units. 

The R2 value (sometimes called the coefficient of 
determination) assesses the strength of the model. In the 
example, an R2 of 0.82 or 82% indicates that 82% of the 
variability observed in the dependent variable (y) (plasma 
glucose) is explained by the regression model, i.e., changes 
in prednisolone dose (x). 

In Figure 3, the Confidence Interval (CI), which is typically 
set at 95%, means that we can be 95% confident that the 
regression line lies within this range (grey area). 

It is important to note that a strong correlation (high r 
and R2 values that are statistically significant) does not 
prove cause and effect. For example, another variable 
that has not been measured (the hidden variable) may be 
the cause. Linear regression assumes a linear relationship 
when perhaps the data points would be best fitted on a 
curved line.

Multiple linear regression analysis is commonly used to 
examine multiple variables in relation to a single dependent 
variable. More complicated models use multiple dependent 
and independent variables (multivariate linear regression). 
These models provide a more realistic picture than simple 
linear regressions but still assume a linear relationship.

Logistic regression analysis

Clinical studies that evaluate the association between 
one or more factors and a single binary outcome, such 
as the presence or absence of death or disease, most often 
employ the method of logistic regression. Unlike linear 

regression, the relationship between the dependent and 
independent variables does not need to be linear. Whereas 
linear regression uses the best-fit straight line, logistic 
regression uses the S-shaped sigmoid curve, known as the 
logistic function (Figure 4).

Logistic regression calculates the probability of a binary 
(yes/no) event (the dependent variable) occurring based 
on one or more independent variables. For example, a 
researcher wants to know the likelihood of developing 
diabetes amongst South Sudanese children of different 
ages, ethnicities, weights, heights, social backgrounds, 
etc.  These independent variables can also be termed risk 
factors. 

The calculations used in logistic regression are complex 
and are nowadays performed by statistical software. 
The statistical outcome of logistic regression is usually 
expressed as the odds ratio (OR) for a unit increase in an 

Figure 3: Hypothetical example of linear regression with statistics (explained 
in the text). 

Figure 4: Sigmoid probability curve and example data points  
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independent variable and the 95% confidence intervals 
for the OR. We discuss this next.

Odds Ratio

The odds are the ratio of two probabilities: the probability 
that an event will occur divided by the probability that it 
will not occur. 

For exposure to a risk factor, OR can be easily understood 
as the odds of an event after exposure divided by the odds 
of the event in the reference group who have not been 
exposed to the risk factor. 

It is easier to think about OR in a contingency table. 
Consider a hypothetical research project investigating the 
risk of developing diabetes and exposure to cassava in diet 
(Table 3).

So the odds of developing diabetes after cassava 
consumption are (35÷45)÷(10÷45), that is 3.5, and the 
odds of developing diabetes with no exposure to cassava 
are (15÷55)÷(40÷55), that is 0.375. An OR of 1.0 
suggests that exposure to the independent factor does not 
affect the probability of disease. OR<1 suggests that the 
independent variable is a protective factor, making the 
probability of developing the disease less likely. OR>1 
suggests that the variable is a risk factor. In this example, 
the odds of developing diabetes after exposure to cassava 
in the diet is 9.33 times greater than the odds for those not 
consuming cassava. 

Note that the OR is quite different from the relative risk 
or risk ratio (RR), except when the outcome or event is 
extremely rare. Using the same example, the risk after 
cassava consumption is 35÷45, and the risk after no 
consumption is 15÷55, so the relative risk or risk ratio is 
(35÷45)÷(15÷55), i.e., ≈2.85. Like ORs, RRs should be 
presented with confidence limits.

Summary

Statistical tests are powerful tools used for all types of 
clinical research. Selecting the appropriate test is crucial 
and depends on the study design. Computer programmes 
are widely available to do the calculations. Of the 
commonly used tests, the unpaired (standard) t-test 
is appropriate for comparing means from exactly two 
groups, such as controls versus experimental group, while 
the paired t-test is chosen for detecting differences in before 

and after type of studies in the same individuals/groups. 
T-tests should not be used repeatedly in the same study to 
compare different groups. Where there are more than two 
groups, the appropriate test is ANOVA: one-way ANOVA 
if one independent variable, and two-way if two different 
independent variables, e.g., two different treatments in the 
same study. Regression analysis allows the researcher to 
estimate the relationship between dependent variables and 
one or more explanatory variables. Correctly interpreting 
observed data provides useful insights for better clinical 
practice. 
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